
G3FC (G3 File Container) File Format Specification

Abstract

This document provides the complete technical specification for the G3FC (G3 File Container) binary format,
version 1.0. G3FC is designed to store multiple files and directories in a single, robust container, which can
optionally be split into multiple data blocks. The format includes features for data integrity via checksums,
security through authenticated encryption, and resilience via forward error correction (FEC). This specification
details the file structure, data types, field layouts, and the algorithms required to implement compatible
software for reading and writing G3FC archives.

License

The reference implementations of the G3FC Archiver Tool are licensed under the GNU General Public License
v2.0. This specification document may be freely distributed and used for implementation purposes.

Workgroup: Independent Submission
independent: g3fc-spec-01
Published: 27 July 2025
Intended Status: Informational
Expires: 28 January 2026
Author: L. Guimaraes

G3Pix

Status of This Memo

This is the final technical specification for version 1.0

Copyright Notice

Copyright (c) 2025 G3Pix - Lucas Guimaraes. All rights reserved.

https://g3pix.com.br/g3fc/
https://github.com/guimaraeslucas/g3fc/

Table of Contents

1. Introduction

1.1. Requirements Language

1.2. General Concepts

2. Overall File Structure

3. Main Header

4. File Index

1. Introduction

The G3FC (G3 File Container) format provides a structured method for archiving multiple files and directories
into a single container or a set of segmented files. It was designed with a focus on robustness, data integrity,
security, and failure recovery. The format defines a clear layout with a header, a file index, data blocks, and a
footer, allowing for efficient access and manipulation of the contained data.

This specification is intended for developers who need to implement G3FC-compatible tools for creating,
reading, or modifying archives.

4.1. File Entry Object (CBOR Map)

5. Data Blocks

6. Compression

7. Data Integrity and Recovery

7.1. Checksums

7.2. Forward Error Correction (FEC)

8. Security and Encryption

8.1. Key Derivation

8.2. Encryption

8.3. Encrypted Payload Structure

8.4. Scope of Encryption

9. Footer

10. File Operations

11. IANA Considerations

12. Security Considerations

13. References

13.1. Normative References

13.2. Informative References

Contributors

Author's Address

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in BCP 14 when, and only when, they appear in all capitals, as shown here.[RFC2119] [RFC8174]

1.2. General Concepts

Byte Order (Endianness):
All multi-byte integer data types (e.g., uint16_t, int64_t) SHALL be stored in Little Endian byte order.

Text Encoding:
All textual data, including filenames and paths, SHALL be encoded using UTF-8. Fixed-size text fields SHALL
be padded with null bytes (0x00) if the content is smaller than the field size.

Timestamps:
All timestamps SHALL be stored as a 64-bit signed integer (int64_t), representing the number of 100-
nanosecond intervals since 00:00:00 UTC on January 1, 0001, in the Gregorian calendar. This is compatible
with .NET Ticks.

2. Overall File Structure

A G3FC archive consists of a main index file (with a .g3fc extension) and zero or more data block files (with
.g3fc<n> extensions). A non-split archive contains all components within the single .g3fc file.

The logical structure of a non-split archive is as follows:

1. Main Header: A fixed-size block containing essential metadata about the container.

2. File Index: A catalog of all files and directories stored in the archive.

3. File Data Block: The actual content of the archived files, concatenated.

4. Data FEC Block (Optional): Parity data for the File Data Block section.

5. Metadata FEC Block: Parity data protecting the Main Header and the uncompressed File Index.

6. Footer: A fixed-size block at the end of the file for quick access to key structures.

In a split archive, the .g3fc file contains the Header, File Index, Metadata FEC Block, and Footer. The File Data is
stored in separate data block files (e.g., archive.g3fc0, archive.g3fc1).

3. Main Header

The Main Header is a fixed-size block of 331 bytes located at the beginning of the .g3fc file. It MUST NOT be
compressed or encrypted. The fields are aligned sequentially with 1-byte packing.

Offset

(B)

Size

(B)

Data

Type

Field Name Description

0 4 char[4] magic_number MUST contain the ASCII characters "G3FC".

4 2 uint16_t format_version_major Major version of the specification. SHALL be 1.

6 2 uint16_t format_version_minor Minor version of the specification. SHALL be 0.

8 16 byte[16] container_uuid A 16-byte UUID (v4 RECOMMENDED) that
uniquely identifies the container.

24 8 int64_t creation_timestamp Timestamp of the container's creation.

Offset

(B)

Size

(B)

Data

Type

Field Name Description

32 8 int64_t modification_timestamp Timestamp of the last modification.

40 4 uint32_t edit_version Starts at 1 and MUST be incremented on each
modification.

44 32 char[32] creating_system Name of the creating software, UTF-8, null-
padded.

76 32 char[32] software_version Version of the creating software, UTF-8, null-
padded.

108 8 uint64_t file_index_offset Absolute offset (in bytes) from the beginning of
the file to the start of the File Index.

116 8 uint64_t file_index_length Length of the File Index in bytes (after
compression and encryption).

124 1 uint8_t file_index_compression 0: None, 1: Zstandard. Current
implementations SHALL use 1.

125 1 uint8_t global_compression 0: Per-file compression, 1: Zstandard
compression on the entire data block.

126 1 uint8_t encryption_mode 0: None, 1: Single password for read/write.

127 64 byte[64] read_salt A 64-byte salt for the read password's KDF.
MUST be zero-filled if not used.

191 64 byte[64] write_salt A 64-byte salt for the write password's KDF.
MUST be zero-filled if not used.

255 4 uint32_t kdf_iterations Number of iterations for PBKDF2. SHOULD be a
high value (e.g., >= 100,000).

259 1 uint8_t fec_scheme Forward Error Correction scheme. 0: None, 1:
Reed-Solomon.

260 1 uint8_t fec_level Percentage of parity data for the Data FEC
Block (0-50). Ignored for split archives.

261 8 uint64_t fec_data_offset Absolute offset to the Data FEC Block. In a split
archive, this MUST be 0.

269 8 uint64_t fec_data_length Length of the Data FEC Block. In a split archive,
this MUST be 0.

277 4 uint32_t header_checksum CRC-32 (IEEE 802.3 polynomial) of the header
from byte 0 to 276.

Offset

(B)

Size

(B)

Data

Type

Field Name Description

281 50 byte[50] reserved Reserved for future use. MUST be filled with
null bytes (0x00).

Table 1

4. File Index

The File Index is a data block containing a catalog of all files and directories. The index SHALL be serialized
using Concise Binary Object Representation (CBOR) . The root object is a CBOR array, where each
element is a CBOR map representing a file entry.

The entire serialized CBOR byte stream is then compressed using Zstandard and MAY be encrypted.

[RFC8949]

[RFC8878]

4.1. File Entry Object (CBOR Map)

Each entry in the CBOR array is a map with the following keys. Analysis of the reference implementations
reveals extra fields for handling large, split files (chunking), which are included here.

Key (string) Value Type

(CBOR)

Description

path text string Full, POSIX-style path using forward slashes (/).

type text string MUST be "file" or "directory".

uuid byte string
(16)

Unique 16-byte UUID for this entry.

creation_time integer int64_t creation timestamp.

modification_time integer int64_t modification timestamp.

permissions unsigned
integer

uint16_t POSIX-style permissions (e.g., 0o755).

status unsigned
integer

uint8_t entry status. 0: Normal, 1: Hidden, 2: Deleted.

original_filename text string (Files only) The original filename.

data_offset unsigned
integer

(Files only) uint64_t offset to the file's data within its data block.

data_size unsigned
integer

(Files only) uint64_t size of the file's data in bytes (after per-file
compression).

uncompressed_size unsigned
integer

(Files only) uint64_t original size of the file in bytes.

Key (string) Value Type

(CBOR)

Description

compression unsigned
integer

(Files only) uint8_t. 0: None, 1: Zstandard. Ignored if
global_compression is active.

checksum unsigned
integer

(Files only) uint32_t CRC-32 checksum of the uncompressed file
data.

block_file_index unsigned
integer

(Split files) uint32_t index of the data block file (e.g., 0 for .g3fc0).
For non-split archives, this is 0.

chunk_group_id byte string
(16)

(Split files) A 16-byte UUID shared by all chunks of a single original
file. This is used to reassemble the file.

chunk_index unsigned
integer

(Split files) uint32_t sequential index of this chunk for a given file
(0, 1, 2...).

total_chunks unsigned
integer

(Split files) uint32_t total number of chunks for the file this piece
belongs to.

Table 2

Non-Split Archive:

Split Archive:

5. Data Blocks

The File Data section contains the actual content of the files. Its structure depends on whether the archive is
split.

All file data is concatenated into one large data block. This block is then subject to global
compression and encryption as specified in the header. It is located between the File Index and the Data
FEC Block.

The file data is chunked and written to separate files named <archive_name>.g3fc0, .g3fc1, etc.
Each of these data block files is independently compressed and encrypted according to the global settings.
The File Index entry's `block_file_index`, `data_offset`, and `data_size` fields are used to locate a specific
chunk of data.

Per-File Compression:

Global Compression:

6. Compression

The G3FC format uses Zstandard (Zstd) for compression .

If the header's `global_compression` flag is 0, each file can be compressed individually
before being added to the data block. The `compression` field in the file's index entry indicates if it was
compressed.

If `global_compression` is 1, the entire data block (either the concatenated data in a
single archive or each split block file) is compressed as a whole with Zstd. In this mode, the per-file
`compression` flag is ignored.

[RFC8878]

7. Data Integrity and Recovery

7.1. Checksums

Data integrity is verified using CRC-32 checksums with the IEEE 802.3 polynomial (0xEDB88320).

File Data Checksum: Each file entry in the index contains a CRC-32 checksum of its original, uncompressed
data.

Header Checksum: The main header contains a checksum of its own content (bytes 0-276) to detect
corruption.

Footer Checksum: The footer contains a checksum of its first 32 bytes to ensure its integrity.

7.2. Forward Error Correction (FEC)

If the `fec_scheme` in the header is 1, Reed-Solomon is used to generate parity data, allowing for recovery
from corruption.

Data FEC Block: Calculated over the entire File Data Block (after global compression and encryption). Its
size is determined by the `fec_level` percentage. This block is only present in non-split archives.

Metadata FEC Block: A separate FEC block that provides resiliency for the most critical parts of the archive.
It is calculated over the concatenated bytes of the Main Header and the uncompressed File Index. It is
stored just before the Footer for robust recovery.

8. Security and Encryption

8.1. Key Derivation

Cryptographic keys SHALL be derived from user-supplied passwords using PBKDF2 with HMAC-SHA256 as the
pseudo-random function. The inputs are the password, the `read_salt` from the header, and the
`kdf_iterations` count from the header. The derived key MUST be 32 bytes (256 bits) long.

8.2. Encryption

Data encryption SHALL be performed using AES-256 in GCM (Galois/Counter Mode). GCM provides both
confidentiality and authenticity.

8.3. Encrypted Payload Structure

For interoperability between implementations (specifically C#, Python, and Go), the encrypted payload SHALL
be structured as follows:

+------------------+--------------------------+------------------+
| Nonce (12 bytes) | Authentication Tag (16B) | Ciphertext (...) |
+------------------+--------------------------+------------------+

8.4. Scope of Encryption

When encryption is active (`encryption_mode` > 0), the following blocks are encrypted:

The File Index block.

The File Data Block (in non-split archives) or each individual Data Block file (in split archives).

The Main Header and the Footer MUST NOT be encrypted to allow for initial parsing of the archive.

9. Footer

A fixed-size footer of 40 bytes is located at the very end of the .g3fc file. Its purpose is to allow an application
to quickly find the File Index and Metadata FEC block without scanning the entire file. This is crucial for
efficient operation, as it means the application can read the last 40 bytes, validate the footer's integrity, and
then seek directly to the File Index location without needing to read or decompress the (potentially very large)
file data block that precedes it.

Offset

from End

Size

(B)

Data

Type

Field Name Description

-40 8 uint64_t main_index_offset Absolute offset to the File Index. MUST
be identical to the header value.

-32 8 uint64_t main_index_length Length of the File Index. MUST be
identical to the header value.

-24 8 uint64_t metadata_fec_block_offset Absolute offset to the Metadata FEC
Block.

-16 8 uint64_t metadata_fec_block_length Length of the Metadata FEC Block.

-8 4 uint32_t footer_checksum CRC-32 checksum of the preceding 32
bytes of the footer.

-4 4 char[4] footer_magic MUST contain the ASCII characters
"G3CE" (G3 Container End).

Table 3

10. File Operations

Deletion: To mark a file or directory as deleted, its `status` field in the File Index SHALL be changed to 2. The
actual file data is not removed from the data blocks. This allows for "undelete" functionality. A separate
"compact" or "purge" operation MAY be implemented by an application to physically remove data marked as
deleted and reclaim space.

11. IANA Considerations

This document requests the registration of a new media type in the "application" tree, as follows:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information: Magic number(s):

File extension(s):

Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

application

vnd.g3pix.g3fc

N/A

N/A

binary

See Section 12 of this document.

This document specifies format version 1.0. All fields use little-endian byte
order.

This document.

G3FC Archiver Tool and other compatible archiving utilities.

N/A

The first 4 bytes are 0x47 0x33 0x46 0x43 (ASCII "G3FC").

.g3fc, .g3fc<n>

N/A

g3fc@g3pix.com.br

COMMON

None

Lucas Guimaraes

G3Pix

12. Security Considerations

Implementers of this specification should be aware of the following security aspects:

Password Strength: The security of an encrypted archive is entirely dependent on the strength of the
user's password. Implementations SHOULD encourage or enforce strong password policies.

KDF Iterations: The number of PBKDF2 iterations (`kdf_iterations`) is critical for resisting brute-force
attacks. The recommended value of 100,000 is a baseline and SHOULD be increased over time as
computing power grows.

Salt: The use of a unique, randomly generated salt for each archive is crucial to prevent rainbow table
attacks. The `read_salt` MUST be cryptographically random.

Authenticated Encryption: The use of AES-256-GCM is REQUIRED as it provides authenticated encryption,
protecting against certain types of attacks that can be performed on unauthenticated ciphers (e.g., bit-
flipping attacks).

Metadata Protection: While the file content is protected, some metadata in the Main Header is not
encrypted. This includes timestamps and the name of the creating software. Users should be aware that
this information is visible even in an encrypted archive.

[RFC2119]

[RFC8174]

[RFC8949]

[RFC8878]

13. References

13.1. Normative References

, , , ,
, March 1997, .

, , , ,
, May 2017, .

 and , , ,
, , December 2020, .

13.2. Informative References

 and ,
, , , February 2021,

.

Path Traversal: Implementations that extract files MUST validate and sanitize the `path` field from the File
Index to prevent path traversal attacks (e.g., writing files outside the intended destination directory).
Paths containing ".." or absolute paths SHOULD be rejected or handled with extreme care.

Compression: The media type employs Zstandard compression. As with any format that uses
compression, G3FC files are susceptible to "compression bomb" denial-of-service attacks, where a small
file decompresses to an extremely large size, potentially exhausting system memory or disk space.
Implementations that parse this format SHOULD mitigate this risk by first checking the
uncompressed_size field in the file's metadata index and enforcing reasonable limits on resource
allocation before attempting decompression.

Executable content: The media type does not contain any active or executable content. The G3FC format is
a container for passive data files and metadata only.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14 RFC 2119
DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/rfc2119>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP 14 RFC 8174
DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/rfc8174>

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)" STD 94 RFC
8949 DOI 10.17487/RFC8949 <https://www.rfc-editor.org/info/rfc8949>

Collet, Y. M. Kucherawy, Ed. "Zstandard Compression and the 'application/zstd' Media
Type" RFC 8878 DOI 10.17487/RFC8878 <https://www.rfc-
editor.org/info/rfc8878>

Contributors

The G3FC format relies on several established technologies. The authors of the specifications for these
technologies are acknowledged for their foundational work.

S. Bradner

RFC 2119

B. Leiba

RFC 8174

C. Bormann

RFC 8949

P. Hoffman

RFC 8949

Y. Collet

RFC 8878

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8878
https://www.rfc-editor.org/info/rfc8878

M. Kucher

RFC 8878

Author's Address

Lucas Guimaraes

G3Pix
Rua Santa Clara, 1049, Centro

-Braganca Paulista Sao Paulo
12900-190
Brazil

 g3fc@g3pix.com.brEmail:
 https://g3pix.com.br/g3fc/URI:

mailto:g3fc@g3pix.com.br
https://g3pix.com.br/g3fc/

